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1 Motivation
Iwasawa’s main conjecture was motivated by the Weil conjectures, so let’s briefly review what
the Weil conjectures tell us. Let X be an algebraic variety over a finite field Fq. Then the
Weil conjectures state that the zeta function attached to X equals the alternating product
of characteristic polynomials of the Frobenius Frobq acting on the `-adic cohomology groups
H i(X,Q`); this also comes with a functional equation and a “Riemann hypothesis” restricting
where the characteristic polynomials can vanish.

There is a strong analogy between number fields and function fields, so it is not unreason-
able to expect an analogue of the Weil conjectures in our current setting. On the analytic side,
the zeta function of the Weil conjectures will correspond to the p-adic L-function Lp(χ, s) de-
fined in Dylan’s talk last week. But on the algebraic side, we need to choose a suitable module
to take the role of the étale cohomology groups (or Tate module). This role will be filled by an
eigenspace of the Zp[[T ]]-module X∞.

In fact, one version of the main conjecture (which I won’t be stating precisely, because I couldn’t
find a good reference for it) has a very nice analogy to the Weil conjectures. In this version,
we consider the module X∞ (actually X−∞) over Zp[[T ]], and tensor this up to Qp[[T ]]. This de-
composes as a direct sum of several eigenspaces, and the T -action respects this decomposition.
Then the claim is that the characteristic polynomial of T on the ωχ−1-eigenspace equals the
p-adic L-function Lp(χ, s) up to a unit in Zp[[T ]]. The analogies are as follows:

H∗(X,Q`)←→ (X−∞ ⊗Zp Qp)
(ωχ−1) (1)

Frobp ←→ T (2)

In this talk, we will see a different version of the statement; both versions were proved by Mazur
and Wiles in 1984.

∗Notes for a talk given in Berkeley’s Student Number Theory Seminar, focusing on Iwasawa theory. Main
reference: Romyar Sharifi, Notes on Iwasawa theory.
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2 Setup
We begin with some setup. In this talk, p will be an odd prime and F will be an abelian CM
field whose degree over Q is prime to p. (Reminder: a CM field1 is a totally imaginary quadratic
extension of a totally real number field; in particular, this means that complex conjugation is
uniquely defined on F .) We consider the cyclotomic Zp-extension F = F0 ⊂ F1 ⊂ · · · ⊂ F∞ of
F .

Recall a few of the objects we have studied, first on the algebraic side: An is the p-part of
the class group of Fn, and X∞ = lim←nAn, where the inverse limit is taken with respect to
the norm maps Nn : An+1 → An. (Recall that X∞ is also the Galois group Gal(L∞/F∞).) In
particular, X∞ is a module over Zp[[Γ]] ∼= Zp[[T ]]. It will be important for us today that X∞
also admits an action of the finite abelian group ∆ = Gal(F/Q): for example, view each An
as Gal(Ln/Fn) and let ∆ act on it by lifting and conjugating.2 This action commutes with the
Zp-module structure (trivially, because it commutes with the Z /pn Z-module structure on An)
and also with the Γ-action (because Γn and ∆ commute in Gal(Fn/Q) ∼= Γn ×∆).

Now we need to discuss the eigenspaces of X∞. Let χ be a character ∆→ Qp
×, which must in

particular take values that are prime-to-p roots of unity. We can ask for elements x ∈ X∞ on
which every element δ ∈ ∆ acts by δ · x = χ(δ) · x; i.e. the χ-eigenspace of X∞. But there’s a
problem: although X∞ is a Zp-module, this might not be enough: since Zp only contains p− 1
roots of unity, the image of χ may not be contained in it. To fix this problem, we extend scalars.
Let Oχ = Zp[imχ], i.e. Zp with some finite number of prime-to-p roots of unity adjoined, which
is isomorphic to Zpn for some n. Then we define the χ-eigenspace X(χ)

∞ to consist of elements
of X∞⊗Zp Oχ on which the action of ∆ agrees with multiplication by χ(∆). Note that this can
also be realized as the tensor product X∞ ⊗Zp[∆] Oχ, where the map Zp[∆] → Oχ is given by
χ : ∆→ Oχ.

3 Statement of theorem
Theorem 3.1. (The main conjecture over Q,3 Mazur-Wiles 1984.) Continue the notation
above, but let χ be a nontrivial even character of ∆ = Gal(F/Q). Let Λχ = Oχ[[T ]]. Then the
characteristic ideal of the Λχ-module X(ωχ−1)

∞ equals the ideal generated by fχ, where fχ ∈ Λχ is
the element defined by fχ((1 + p)s − 1) = Lp(χ, s) for s ∈ Zp.

Some explanation here:
1The reason for the terminology: recall that when an elliptic curve has complex multiplication, its endomor-

phism ring is an order in an imaginary quadratic field. The analogue for higher-dimensional abelian varieties is
a simple abelian variety of dimension n whose endomorphism ring is commutative with rank 2n over Z, which
is as large as possible. In this case, the endomorphism ring must be an order in a CM field, and conversely all
orders in CM fields appear in this way.

2More precisely, we have a short exact sequence 0→ An → Gal(Ln/Q)→ Z /pn Z×∆→ 0; the middle term
acts on An by conjugation, and the action of An itself is trivial.

3“Over Q” in the sense that all fields involved are abelian over Q, even though F itself need not equal Q.
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• X∞ was originally a Zp[[T ]]-module, but its eigenspaces live over the extended ring of
scalars Oχ[[T ]].

• We originally defined characteristic ideals (in Bertie’s talk) for modules over Λ = Zp[[T ]],
but all of that theory works essentially without change for any complete local Noetherian
ring with finite residue field of characteristic p, and Λχ certainly satisfies these properties.

• The character ω is the Teichmüller character ∆ → µp−1 ⊂ Z×p defined as follows: for
δ ∈ ∆, we only need to specify ω(δ) modulo p, and we choose it so that δ(ζ) = ζω(δ) for
all pth roots of unity ζ. (Confusion: does F contain pth roots of unity? The introduction
suggests that F = Q(µp) is the most important case, but we aren’t assuming that here.)

• Recall that the map s 7→ (1 + p)s is a bijection Zp → 1 + pZp, so it makes sense to define
fχ by specifying it on the points (1 + p)s − 1. Note also that since we want fχ to be a
formal power series, its input must be in pZp rather than just Zp.

4 Consequences and further results
The statement I gave in this talk was the main conjecture over Q, in the sense that the fields
involved are cut out by abelian characters of GQ. There exist generalizations to totally real
fields, CM fields, elliptic curves, and so on.

An interesting consequence of the main conjecture is the Herbrand-Ribet theorem. For this, we
take F = Q(ζp), and note that every character χ of ∆ is a power of the Teichmüller character
ω. Herbrand proved in the early 1900s that if the ωn-eigenspace of the class group of F is
nontrivial, then p divides the Bernoulli number Bp−n. Later, Ribet proved the more difficult
theorem that the converse holds. The eventual proof of the main conjecture was modeled on
Ribet’s proof, and yielded his theorem as a corollary.
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